

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in

Curriculum for Undergraduate Degree (B.Tech.) in Electronics and Communication (VLSI Design) (w.e.f. AY: 2020-21)

Part III: Detailed Curriculum

Sixth Semester

Course Name:	Microelectronics Fabrication			
Course Code:	PC-EC(V)601	Category:	Professional Core	
Semester:	Sixth	Credit:	3	
L-T-P:	3-0-0	Pre-Requisites: Basic Semiconductor		
			Physics, Chemistry,	
			Materials, MOS	
Full Marks:	100			
Examination	Semester Examination:	Continuous	Attendance: 05	
Scheme:	70	Assessment: 25		

Course Objectives:		
1	Understand basic features of semiconductor process technology	
2	Knowledge of different fabrication steps involved in microelectronics fabrication	
3	Knowledge of IC fabrication	

Course Contents:			
Module No.	Description of Topic		
1	Clean Room Technology : Clean room concept, Clean room classes, surface contamination	2	
2	Wafer Preparation: Crystal growth: Czochralsky and float zone technique, Electronic grade Si, Wafer cleaning, Wafer identification, wafer characterization	4	
3	Photolithography: Photoresist and its types, Photoresist spin coating, photolithography process flow, Prebake and postbake, Stripping, Pattern transfer methods	4	
4	Oxidation : SiO ₂ thermal properties, Growth mechanism and kinetic oxidation, oxidation techniques and systems: dry and wet oxidation, oxide induced defects, characterization of oxide films, Use of thermal oxide and CVD oxide, growth and properties of dry and wet oxide, dopant distribution, oxide quality	3	
5	Etching: Dry and wet etching, Sputter etching, plasma etching, RIE	2	

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

6	Diffusion: Fick's equation, atomic diffusion mechanisms: predeposition and drive in, measurement techniques	
7	Ion Implantation: Range theory, Ion implantation process, Equipments, Ion implanter, electronics and nuclear collision, implant damage and annealing Plasma flooding, Ion stopping, shallow junction, high energy implementation.	5
8	Epitaxy: Requirements, Epitaxy processes, Physical Vapor Deposition, Chemical Vapor Deposition (CVD), Plasma CVD, Metal Organic CVD, Liquid phase Epitaxy, Molecular Beam Epitaxy	
9	Metallization: Different methods of metallization: evaporation, sputtering, multilevel metallization, electro migration, Uses & desired properties of different metals	3
10	VLSI process integration: CMOS fabrication process	2
11	Packaging, assembly and testing: Brief introduction on Packaging, assembly, testing	
Total		36

Cou	Course Outcomes:		
Afte	After completion of the course, students will be able to:		
1	Understand the necessities of clean room in microelectronics fabrication		
2	Describe different common fabrication steps used in microelectronics fabrication and		
	their importance		
3	Demonstrate different steps involved in basic CMOS manufacturing procedure starting		
	from bare silicon wafer		
4	Understand the importance of IC packaging, assembly and testing		

Lear	ning Resources:	
1	Semiconductor Devices Physics and Technology, Author: S.M. Sze; Wiley	
2	Fabrication Engineering at the Micro-and Nanoscale, Author: Stephen A. Campbell;	
	Oxford University Press	
3	An Introduction to Semiconductor Microtechnology, Author: D.V. Morgan and K.	
	Board; Wiley	
4	VLSI Technology, Author: S.M. Sze; MGH	
5	Introduction to Microelectronic Fabrication, Author: Richard C. Jaeger; Pearson	
6	Silicon VLSI Technology: Fundamentals, Practice, and Modeling, Author; James D.	
	Plummer, M.D. Deal, P.B. Griffin; Pearson	
7	Fundamentals of Microfabrication: The Science of Miniaturization, Author: M. J.	
	Madou; CRC Press	
8	The Science and Engineering of Microelectronic Fabrication, Author: Stephen A.	
	Campbell; Oxford University Press	

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Course Name:	Digital VLSI			
Course Code:	PC-EC(V)602	Category:	Professional Core	
Semester:	Sixth	Credit:	3	
L-T-P:	3-0-0	Pre-Requisites:	Digital Electronics	
Full Marks:	100			
Examination	Semester Examination:	Continuous	Attendance: 05	
Scheme:	70	Assessment: 25		

Course Objectives:			
1	To provide in-depth understanding of the digital integrated circuit and building blocks		
2	To provide a basic idea on digital VLSI circuits		

Course C	Course Contents:		
Module No.	Description of Topic		
1	Introduction to VLSI Design Flow	2	
2	MOS Design: Pseudo NMOS Logic – Inverter, Inverter threshold voltage, Output high voltage, Output Low voltage, Gain at gate threshold voltage, Transient response, Rise time, Fall time, Pseudo NMOS logic gates, Transistor equivalency, CMOS Inverter logic.	8	
3	Combinational MOS Logic Circuits: MOS logic circuits with NMOS loads, Primitive CMOS logic gates – NOR & NAND gate, Complex Logic circuits design – Realizing Boolean expressions using NMOS gates and CMOS gates, AOI and OIA gates, CMOS full adder, CMOS transmission gates, Designing with Transmission gates.		
4	Sequential MOS Logic Circuits: Behavior of bistable elements, SR Latch, Clocked latch and flip flop circuits, CMOS D latch, and edge triggered flip-flop.	8	
5	Dynamic Logic Circuits: Basic principle, Voltage Bootstrapping, Synchronous dynamic pass transistor circuits, Dynamic CMOS transmission gate logic, High performance Dynamic CMOS circuits.	6	
6	Semiconductor Memories: Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory- NOR flash and NAND flash.		
Total		38	

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Cour	Course Outcomes:			
After	After completion of the course, students will be able to:			
1	Understand the MOS and CMOS Invertor Circuits			
2	Analyze digital circuits using CMOS Logic gates			
3	Design of combinational and sequential logic circuits using CMOS			
4	Apply the MOS logic circuits for Dynamic Logic Circuits and Semiconductor			
	Memories			

Lear	Learning Resources:		
Book	S		
1	Ken Martin, "Digital Integrated Circuit Design", Oxford University Press, 2011.		
2	Sung-Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and		
	Design", TMH, 3rd Edition, 2011.		
3	Ming-BO Lin, "Introduction to VLSI Systems: A Logic, Circuit and System		
	Perspective", CRC Press, 2011		
4	Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, "Digital Integrated		
	Circuits – A Design Perspective", 2nd Edition, PHI.		

Course Name:	Computer Network		
Course Code:	PE- EC(V)601A	Category:	Professional Elective
Semester:	Sixth	Credit:	3
L-T-P:	3-0-0	Pre-Requisites: Dig	
Full Marks:	100		
Examination	Semester Examination:	Continuous	Attendance: 05
Scheme:	70	Assessment: 25	

Course	Course Objectives:				
1	To have a basic idea of communication network and layered protocol architecture.				
2	To understand different flow control and error control mechanisms and to analyze the				
	performance of different multiple access protocols.				
3	To understand internet addressing, routing techniques, process to process delivery,				
	congestion control and their associated protocols.				
4	To understand different application layer protocols and modern communication				
	technologies.				
5	To have the basic idea of cryptography and network security.				

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Module No.	Description of Topic	Contact Hrs.
1	Overview of Data Communication and Networking: Introduction; Data communications: components, data representation (ASCII, ISO etc.), direction of data flow (simplex, half duplex, full duplex); network criteria, physical structure (type of connection, topology), categories of network (LAN, MAN, WAN); Internet: brief history, Protocols and standards; Reference models: OSI reference model, TCP/IP reference model, their comparative study.	4
	Physical Level: Overview of data (analog & digital), signal (analog & digital), transmission (analog & digital) & transmission media (guided & unguided); Circuit switching: time division & space division switch, TDM bus; Telephone Network.	2
2	Data link Layer: Types of errors, framing (character and bit stuffing), error detection & correction methods; Flow control; Protocols: Stop & wait ARQ, Go-Back-N ARQ, Selective repeat ARQ, HDLC.	4
L	Medium Access sub layer: Point-to-Point Protocol, LCP, NCP, Token Ring; Reservation, Polling, Multiple access protocols: Pure ALOHA, Slotted ALOHA, CSMA, CSMA/CD, CSMA/CA Traditional Ethernet, fast Ethernet (in brief).	6
3	Network layer: Internetworking & devices: Repeaters, Hubs, Bridges, Switches, Router, Gateway; Addressing: IP addressing, subnetting; Routing: techniques, static vs. dynamic routing, Unicast Routing Protocols: RIP, OSPF, BGP; Other Protocols: ARP, IP, ICMP, IPV6.	6
	Transport layer: Process to Process delivery; UDP; TCP; Congestion Control: Open Loop, Closed Loop choke packets; Quality of service: techniques to improve QoS: Leaky bucket algorithm, Token bucket algorithm.	6
	Application Layer: Introduction to DNS, SMTP, SNMP, FTP, HTTP & WWW; Security: Cryptography (Public, Private Key based), Digital Signature, Firewalls.	4
4	Modern topics: ISDN services & ATM, DSL technology, Cable Modem: Architecture & Operation in brief, Wireless LAN: IEEE 802.11, Introduction to bluetooth.	4
Total		36

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Cour	Course Outcomes:			
After	After completion of the course, students will be able to:			
1	1 Understand basic idea of communication network and layered protocol architecture.			
2	2 Understand different flow control and error control mechanisms and analyze the performance			
	of different multiple access protocols.			
3	3 Understand internet addressing, routing techniques, process to process delivery, congestion			
	control and design a subnet as per the requirement.			
4	4 Apply different application layer protocols and modern communication technologies.			
5	Understand the basic idea of cryptography and network security.			

Lear	Learning Resources:		
1	B. A. Forouzan - "Data Communications and Networking (4 th Ed.)" - TMH		
2	A. S. Tanenbaum - "Computer Networks (4th Ed.)" - Pearson Education/PHI		
3	W. Stallings - "Data and Computer Communications (5th Ed.)" - PHI/ Pearson Education		
4	Zheng & Akhtar, Network for Computer Scientists & Engineers, OUP		
5	Black, Data & Computer Communication, PHI		
6	Kurose and Rose - "Computer Networking -A top down approach featuring the internet" -		
	Pearson Education		
7	Leon, Garica, Widjaja - "Communication Networks" - TMH		

Course Name:	Instrumentation and Measurement			
Course Code:	PE- EC(V)601B	Category:	Professional Elective	
Semester:	Sixth	Credit: 3		
L-T-P:	3-0-0	Pre-Requisites:	re-Requisites: Basic Electrical &	
			Electronics [ES-EE 101],	
			Analog Electronic Circuits[PC-	
			EC302]	
Full Marks:	Marks: 100			
Examination Semester Examination: Continuous Attendance: 05		Attendance: 05		
Scheme:	me: 70 Assessment: 25			

Cours	Course Objectives:		
1	To impart basic concept of instrument characteristics.		
2	To impart knowledge about different required Measuring Instruments.		
3	To understand the operational technique of different Signal Analyzers.		
4	To understand the basic principle of operation of various Oscilloscopes.		
5	To develop an insight into the construction and working of different Transducers.		
6.	To understand and analyze the concept of Bridges and DAS.		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Course Co	ontents:		
Module No.	Description of Topic	Contact Hrs.	
1	Block Schematics of Measuring Systems: Performance characteristics, Static characteristics, Accuracy, Precision, Resolution, Types of Errors, Dynamic Characteristics, Repeatability, Reproducibility, Fidelity, Lag, Standards.		
2	Measuring Instruments: DC Voltmeters, DC Current Meters, AC Voltmeters and Current Meters, Ohmmeters, Multimeters, Meter Protection, Extension of Range, True RMS Responding Voltmeters, Specifications of Instruments.	6	
3	Signal Analyzers: Wave Analyzers, Harmonic Distortion, Spectrum Analyzers, Signal Generators, Frequency Synthesizer.	6	
4	Oscilloscopes: CRT, Block Schematic of CRO, Time Base Circuits, Lissajous Figures, CRO Probes, Delay lines, Applications: Measurement of Time, Period and Frequency. Special Purpose Oscilloscopes: Dual Trace, Dual Beam CROs, Digital Storage CROs.	6	
5	Transducers: Classification, Strain Gauges, Force and Displacement Transducers, Resistance Thermometers, LVDT, Thermocouples, Piezoelectric Transducers.	6	
6	Bridges: Wheat Stone Bridge, Kelvin Bridge, and Maxwell Bridge.	4	
7	Display Device: Classification of Display device, LED Display, LCD Display, Segmental Display, Dot Matrix Display.	4	
8	Data Acquisition System: Single channel DAS, Multi-channel Das, Data logging, IEEE-488.	4	
Total		40	

Cour	Course Outcomes:				
After	After completion of the course, students will be able to:				
1	Explain the basic concept of instrument characteristics.				
2	Execute the process of different required Measuring Instruments.				
3	Understand the operational technique of different Signal Analyzers.				
4	4 Understand the insight of the construction and working of different Transducers				
5	5 Understand and analyze the concept of Bridges and DAS.				

L	Learning Resources:			
	1	Electronic Instrumentation: H.S.Kalsi, TMH, 2nd Edition 2004.		
	2	Modern Electronic Instrumentation and Measurement Techniques: A.D. Helbincs, W.D.		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

	Cooper: PHI, 5th Edition, 2003	
3	Electronic Measurements and Instrumentations by K. Lal Kishore, Pearson Education, 2010.	
4	Electronic Instrumentation and Measurements, David A. Bell, Oxford Uiv. Press, 1997.	
5	Electronic Measurements and Instrumentation: B. M. Oliver, J. M. Cage TMH Reprint.	
6	A Course in Electronics and Electrical Measurements and Instrumentation: S K Kataria and	
	Sons,2013.	

Course Name:	Sensors and Transducers			
Course Code:	PE-EC(V)602A	Category:	ory: Professional Elective	
Semester:	Sixth	Credit:	3	
L-T-P:	3-0-0	Pre-Requisites:	Basic Knowledge of Instrumentation Measurement	
Full Marks:	100			
Examination	Semester Examination:	Continuous	Attendance: 05	
Scheme:	70	Assessment: 25		

Course	Course Objectives:		
1	Understand Characteristics and choice of Sensors		
2	Understand basic principles and applications of resistive and reactive transducers		
3	Analyze the self generating sensors i.e thermocouple, piezoelectric sensors		
4	Understand basic principles of thickness, level and vacuum measurement		
5	5 Analyze the signal conditioning circuits of resistive and reactive transducers		
6	Understand basics of Instrument buses for VLSI testing		

Course Contents:		
Module No.	Description of Topic	Contact Hrs.
1	Introduction to Sensor Based Measurement Systems-General concept and Terminology, Transducer, Sensor and Actuator, Sensor classification, Static and dynamic characteristics of measurement system. Primary Sensing Elements: Transducers- Characteristics and choice of transducer- Input characteristics, loading effect, Transfer characteristics, errors, output characteristics. Factors influencing the choice of transducer.	4
2	Resistive Sensors: Strain Gauge- Basic Theory, Types of strain gauge, semiconductor strain gauge and it's advantages, Gauge factor, Gauge sensitivity, Temperature compensation and cancellation techniques, Applications. Resistance Temperature Detectors(RTD)- Basic theory, linear approximation, quadratic approximation. Thermistor- Basic theory, construction, Resistance Temperature characteristics,	7

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956 Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

	voltage current characteristics, Applications. IC Temperature Detectors: LM 335, LM 34, AD 592	
3	Capacitive Sensors: Basic Theory, sensing through change of physical parameters, change of dielectric constant, Frequency response, disadvantages.	
4	Self Generating Sensors: Thermocouple- Basic Theory, construction, measurement of output, Errors occurring in measurement, Advantages and Disadvantages. Piezoelectric Sensors- Basic Theory, Modes of operation, properties, equivalent circuit, impulse response, applications.	
5	Thickness Measurement- Electronic Gauges, Inductive gauges (Eddy current sensing), Hall effect gauges. Level Measurement through electrical properties. Vacuum Measurement- Basic concept of Direct Reading Gauges. Indirect Gauges. Viscosity method, Pirani Gauge and Thermistor. Basic concept of Fibre optic sensor.	
6	Signal Conditioning Circuits: Signal conditioning for Resistive Sensors-Voltage divider, Wheatstone bridge, linearization, calibration and balance of resistive sensor bridges, compensation techniques, Differential and	
7	Introduction to Instrument Buses and VLSI Testing: IEEE 488 bus- Major specifications, GPIB operation, Signals and lines, Polling, Physical and	
Total		36

Cour	Course Outcomes:		
After	After completion of the course, students will be able to:		
1	1 Understand Characteristics and choice of transducer		
2	Understand basic principles and applications of resistive and reactive transducers.		
3	3 Analyze the self generating sensors i.e thermocouple, piezoelectric sensors		
4	4 Understand basic principles of thickness, level and vacuum measurement		
5	5 Analyze the signal conditioning circuits of resistive and reactive transducers		
6	Understand basics of Instrument buses for VLSI testing		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Lear	Learning Resources:		
1	Electrical and Electronics Measurement and Instrumentation by A.K. Sawhney,		
	Dhanpat Rai and Sons.		
2	Sensors and Signal Conditioning by John G. Webster, John Wiley and Sons, INC.		
3	Measurement, Instumentation and Sensor Handbook, 2 nd edition, by John G. Webster and Halit Eren. CRC Press.		

Course Name:	MEMS		
Course Code: PE-EC(V)602B Category:		Professional Elective	
Semester:	Sixth	Credit:	3
L-T-P:	3-0-0	Pre-Requisites:	Basic knowledge of Physics and Mechanics (BS-PH101, ES-EE101)
Full Marks:	100		
Examination	Semester Examination:	Continuous	Attendance: 05
Scheme:	70	Assessment: 25	Attendance, 03

Course	Course Objectives:		
1	To understand the operation of major classes of MEMS devices/systems		
2	To give the fundamentals of standard micro fabrication techniques and processes		
3	To understand the unique demands, environments and applications of MEMS devices		

Course Contents:		
Module No.	Description of Topic	
1	Introduction and Historical Background	2
2	Scaling Effects. Micro/Nano Sensors, Actuators and Systems overview, Applications of Micro and Nano electromechanical systems 4	
3	Mechanics of solids in MEMS/NEMS: Stresses, Strain, Hookes's law, Poisson effect, Linear Thermal Expansion, Bending, Energy methods, Beams, Cantilevers, Plates, Diaphragms – Typical applications	
4	Materials for MEMS and NEMS: Silicon, silicon compounds, polymers,	
5	Basic MEMS fabrication modules: Micromachining: Surface Micromachining, sacrificial layer processes, Stiction; Bulk Micromachining, Isotropic Etching and Anisotropic Etching, LIGA process	8

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

6	icro system Packaging: general considerations in packaging design – evels of Micro system packaging		
7	Bonding techniques for MEMS : Surface bonding , Anodic bonding , wire bonding , Sealing –Assembly of micro systems	4	
8	Overview of MEMS areas: RF MEMS, Bio-MEMS, MOEMS, NEMS	4	
Total		36	

Cour	Course Outcomes:		
After	After completion of the course, students will be able to:		
1	1 Appreciate the underlying working principles of different MEMS and NEMS devices.		
2	2 Understand the typical materials used for fabrication of micro systems		
3	3 Understand the principles of standard MEMS fabrication techniques		
4	Describe the challenges in MEMS packaging and assembly		

Lear	ning Resources:
1	G. K. Ananthasuresh, K. J. Vinoy, S. Gopalkrishnan K. N. Bhat, V. K. Aatre, Micro and
	Smart Systems, Wiley India, 2012.
2	S. E.Lyshevski, Nano-and Micro-Electromechanical systems: Fundamentals of Nano-
	and Micro engineering (Vol 8), CRC Press
3	S.D. Senturia, Microsystem Design, Kluwer, Academic Publishers, 2001.
4	M. Madou, Fundamentals of Microfabrication, CRC Press, 1997.
5	Tai-Ran Hsu, MEMS & Microsystems Design and Manufacture
6	Chang C Y and Sze S. M., VLSI Technology, McGraw-Hill, New York, 2000
7	Julian W Gardner, Micro sensors: Principles and Applications, John Wiley & Sons, 1994

Course Name:	Artificial Intelligence		
Course Code:	OE-CS601B	Category:	Open Elective
Semester:	Sixth	Credit: 3	
L-T-P:	3-0-0	Pre-Requisites: Data Structure &	
			Algorithm, Mathematics
Full Marks: 100			
Examination Semester Examination: Continuous Attendance: 05		Attendance: 05	
Scheme:	70	Assessment: 25	

Cours	Course Objectives:		
1	To understand the basic concepts of AI and its use as optimization technique		
2	To understand different search strategies and Resolution in AI.		
3	To understand classification and clustering methodology		
4.	To understand Deep Learning Paradigms		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Course Co	ontents:	
Module No.	Description of Topic	Contact Hrs.
1	Introduction to AI, Machine Learning, AI VS Machine learning Vs. Deep Learning	2
2	Problems, Problem Space & search: Defining the problem as state space search, production system, problem characteristics, Issues in the design of search programs.	
3	Search techniques:- Solving problems by searching: problem solving agents, searching for solutions; uniform search strategies: breadth first search, depth first search, depth limited search, bidirectional search, comparing uniform search strategies. Heuristic search strategies:- Greedy best-first search, A* search, memory bounded heuristic search: local search algorithms & optimization problems: Hill climbing search, simulated annealing search, local beam search,	
4	Genetic algorithms; constraint satisfaction problems, local search for constraint satisfaction problems.	2
5.	Adversarial search Games, optimal decisions & strategies in games, the Mini-max search procedure, alpha-beta pruning, additional refinements, Iterative deepening.	3
6.	Concept of Probabilistic Reasoning, Dempster Shafer theory, concept of False Positive and False Negative, Bayes Theorem	3
7.	Representing simple fact in logic, representing instant & ISA relationship, computable functions & predicates, resolution, natural deduction.	4
8.	Introduction to Machine Learning, Difference between Supervised and unsupervised learning, Linear regression and Logistic regression, Multivariate Logistic Regression	4
9.	Forecasting Techniques using Time Series, Unsupervised Learning – Clustering, Advanced Topics like SVM. And Case Study.	4
10.	Deep Learning - Neural Network Basics, Shallow Neural Network and Deep Neural Network with Case Study.	3
Total		36

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Cour	Course Outcomes:		
After	After completion of the course, students will be able to:		
1	Understand the concept of AI, Genetic Algorithm and Search Techniques		
2	Understand and Implement supervised and Unsupervised Techniques		
3	Understand the concept of Deep Learning		
4.	Apply different Techniques by understanding the pattern of problems.		

Leari	Learning Resources:		
1	Artificial Intelligence- Stuart Russel & Norvig Pearson (India) Pvt. Ltd.		
2	Artificial Intelligence with Python – Prateek Joshi PACKT Publishing		
3	Deep Learning – Ian GoodFellow, MIT Press		
4	Genetic Algorithms- Goldberg, Pearson		
5	Machine Learning – Tom Mitchell , TMH		

Course Name:	Machine Learning			
Course Code:	OE-IT601A	Category:	Open Elective	
Semester:	Sixth	Sixth Credit: 3		
L-T-P:	3-0-0	Pre-Requisites:	Data Structure & Algorithm,	
			Mathematics	
Full Marks:	100			
Examination	Semester Examination:	Continuous	Attendance: 05	
Scheme:	70	Assessment: 25		

Cours	Course Objectives:		
1	To learn the concepts of data and patterns		
2	To design and analyze various machine learning algorithms.		
3	Explore supervised and unsupervised machine learning		
4.	Explore Deep Learning Techniques and various feature extraction.		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Course Co	Course Contents:		
Module No.	Description of Topic	Contact Hrs.	
1	Supervised Learning: - Distance based methods, Nearest Neighbor. Learning Techniques with Decision Tree and Naïve Bayes Classifier.	6	
2	Supervised Learning (Regression/Classification):- Linear Regression, Logistic Regression, Linear Models optimization SVM, Dealing with Non Linearity and Kernel Methods. Multi class classification, Ranking		
3	Introduction to Unsupervised Learning:- K-Means Clustering, Kernel K-Means, Dimensionality Reduction with PCA and Kernel PCA. Preliminary idea of Factorization and generative models (Mixture model and Latent factor model).		
4	Evaluating Machine Learning Algorithms model selection, Introduction to statistical learning theory and Ensemble Methods (Bagging, Boosting and Random Forests).	6	
5.	Model Estimation, Modeling Time Series Data, Deep Learning and Feature Extraction Techniques. Shallow Neural Network and Deep Neural Network.	7	
6.	Case Study: - Selection from a Technique and Implementing with a chosen model.	1	
Total		36	

Cour	Course Outcomes:		
After	After completion of the course, students will be able to:		
1	Explain different supervised Learning Techniques		
2	Identify the difference between Linear and Non Linear Models		
3	Understand different unsupervised learning techniques.		
4.	Understand the concept of model estimation and deep learning techniques		

Leari	Learning Resources:		
1	Machine Learning, Tom Mitchell, McGraw Hill, 1997.		
2	Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007		
3	Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012		
4	Hastie, Tibshirani, Friedman The Elements of Statistical Learning Springer 2007		
5.	Introduction to Machine Learning with Python		
	by Andreas C. Müller, Sarah Guido		
	Released October 2016		
	Publisher(s): O'Reilly Media, Inc.		
	ISBN: 9781449369415		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Course Name:	Digital VLSI Lab	Digital VLSI Lab		
Course Code:	PC-EC(V)692	Category: Professional Core		
Semester: Sixth Credit: 1		1		
L-T-P:	0-0-2	Pre-Requisites:	Digital Electronics	
Full Marks:	100			
Examination	Semester Examination:	Continuous	Attendance: 05	
Scheme:	60	Assessment: 35	Attendance: 03	

Course Objectives:		
1	To learn Hardware Descriptive Language(Verilog/VHDL)	
2	To learn the fundamental principles of VLSI circuit design in digital domain	
3	To familiarize implementation of logical modules on FPGAs	

Course C	Course Contents:		
Module No.	Description of Topic/ Experiment	Contact Hrs.	
1.	Introduction to HDL.	2	
2.	Design of a Sub tractor and its implementation using FPGA.	2	
3.	Design of priority Encoder and its implementation using FPGA.	2	
4.	Design of a 4 bit parallel adder and its implementation using FPGA	2	
5.	Design of up-down counter using HDL its implementation using FPGA	2	
6.	Design and simulation of XOR and MUX using TG.	2	
7.	Design and simulation of Decoder using TG.	4	
8.	Design of a SR Flip-Flop using SPICE	2	
9.	Design of a JK Flip-Flop using SPICE	2	
10.	Innovative Experiment	4	
	Total	24	

Cou	Course Outcomes:		
After	completion of the course, students will be able to:		
1	Understanding the hardware design language (HDL).		
2	Design of the Combinational circuit using hardware description language or tools and		
_	validate its functionality		
3	Design of the Sequential circuit using hardware description language or tools and		
3	validate its functionality		
4.	Design and implement on a FPGA board		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Lear	Learning Resources:	
1	Laboratory and FPGA Manual	
2	[Peter_JAshenden]_Digital_Design_(VHDL)	
3	FPGA prototyping by Verilog Xilinx SpartanTM-3V ersion	
	Pong P. Chu Cleveland State University	
4	A VHDL Primer Jayaram Bhasker, Prentice Hall Englewood Cliffs, New Jersey	

Course Name:	Name: Computer Network Lab			
Course Code:	PE- EC(V)691A	Category: Professional Elective		
Semester: Sixth Credit:		Credit:	1	
L-T-P:	0-0-2	Pre-Requisites:	Basic programming concept in C under Linux environment	
Full Marks:	100			
Examination Semester Examination: Continuous		Attendance: 05		
Scheme:	60	Assessment: 35	Attendance, 03	

Course	Course Objectives:		
1	To design the structure of a LAN and select the components required to install it.		
2	To configure NIC for multiple operating systems.		
3	To write programs in C for inter process communication using Pipe in Linux		
	environment.		
4	To write network programs in C using Socket in Linux environment.		

Course Contents:		
Module No.	Description of Topic/ Experiment	Contact Hrs.
1	Familiarization of different Networking devices, such as hub, switch etc. and writing a report on structures and layouts of a LAN.	2
2	Preparation of Straight-Trough and Cross-Over cable and testing the performance of them.	2
3	Configuration of IP address on Windows and Linux platforms.	2
4	Write a program for ECHO Server using TCP that will receive a string from a client and will send it back to the client. The client will display the receive text.	2
5	Write a program for ECHO Server using UDP that will receive a string from a client and will send it back to the client. The client will display the receive text.	2
6	Write a program for Day-Time Server using TCP.	2
7	Write a program for Day-Time Server using UDP.	2
8	Write a Concurrent ECHO Server program using TCP.	2

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah-711204, West Bengal, India

9	Write a program to implement flow control mechanism.	2
10	Write a program to implement error detection mechanism using Cyclic	2
	Redundancy Check (CRC).	
11	Write a program to implement error control mechanism.	2
12	Write a program to implement multicast/broadcast sockets.	2
	Total	24

Cour	Course Outcomes:		
After	After completion of the course, students will be able to:		
1	1 Design the structure of a LAN and the components required to install it.		
2	Configure NIC for multiple operating systems.		
3	Write programs in C for inter process communication using Pipe in Linux environment.		
4	Write network programs in C using Socket in Linux environment.		

Learning Resources:		
1	Comer - "Internetworking with TCP/IP, vol. 1, 2, 3(4th Ed.)" - Pearson Education/PHI	
2	Stevens, "TCP/IP Illustrated, Volume 1", (2 nd Edition), Addision Wesley	
3	Lab Manual	

Course Name:	Instrumentation and Measurement Lab			
Course Code:	PE-EC(V)691B	Category: Professional Elective		
Semester:	Sixth	Credit:	1	
L-T-P:	0-0-2	Pre-Requisites:	Basic Electrical &	
Electron		Electronics [ES-EE 101],		
			Analog Electronic	
			Circuits[PC-EC302]	
Full Marks: 100				
Examination Semester Examination: Continuous Attendance: 0		Attendance: 05		
Scheme:	60	Assessment: 35		

Cour	Course Objectives:	
1	To impart the concept of instrument characteristics.	
2	To impart the knowledge about error.	
3	To understand the operation of different required measuring instrument.	
4	4 To understand the basic principle of operation of LVDT.	
5	To develop an insight into the construction and working of VCO or PLL.	

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Course Contents:		
Module No.	Description of Topic	
1	Study of Static Characteristics of a Measuring Instrument	6
2	Study of Dynamic Characteristics of a Measuring Instrument	2
3	Statistical analysis of errors in measurement .	2
4	Calibration of Load cell and measurement of unknown load	2
5	Acquaintance with basic structure of DMM and measurement of different electrical parameters	4
6	Wave analysis using Q meter.	2
7	Study the operation of LVDT.	2
8	Study of CRO and detection of usual faults	4
Total		24

Cour	Course Outcomes:		
After	After completion of the course, students will be able to:		
1	1 Explain the instrument characteristics.		
2	Understand the clear knowledge about error.		
3	3 Execute the operation of different required measuring instrument.		
4	4 Understand the basic principle of operation of LVDT.		
5	Understand the insight of construction and working of VCO or PLL.		

Leari	Learning Resources:		
1	Electronic instrumentation: H.S.Kalsi, TMH, 2nd Edition 2004.		
2	Modern Electronic Instrumentation and Measurement Techniques: A.D. Helbincs, W.D.		
	Cooper: PHI, 5th Edition, 2003		
3	Electronic Measurements and Instrumentations by K. Lal Kishore, Pearson Education, 2010.		
4	Electronic Instrumentation and Measurements, David A. Bell, Oxford Uiv. Press, 1997.		
5	Electronic Measurements and Instrumentation: B. M. Oliver, J. M. Cage TMH Reprint.		
6	A Course in Electronics and Electrical Measurements and Instrumentation: S K Kataria and		
	Sons,2013.		

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India
Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in

Course Name:	Artificial Intelligence L	ab	
Course Code:	OE-CS691B	Category:	Open Elective
Semester:	Sixth	Credit:	1
L-T-P:	0-0-2	Pre-Requisites:	Data Structure & Algorithm,
			Mathematics
Full Marks:	100		
Examination	Semester Examination:	Continuous	Attendance: 05
Scheme:	60	Assessment: 35	

Cours	Course Objectives:	
1	To implement different gaming design Techniques using AI	
2	To implement different Searching Strategies	
3	To implement different classification and clustering Technique	
4.	To implement neural network models and understand deep learning methodologies.	

Course (Course Contents:		
Modu le No.	Description of Topic	Contact Hrs.	
1	Implementation of some problems related with Production System, BFS, DFS with Python/R	2	
2	Implementation of Heuristic Search Strategies using Python/R (Any 2 search strategies)	4	
3	Games Designing with AI Techniques using Python/R (Using MINIMAX)	2	
4	Implementation of Bayesian technique with Python /R	2	
5.	Logic Programming using PROLOG/LISP and difference in Python/R implementation	4	
6.	Implementation of Linear Regression , logistic regression, multivariate logistic regression	4	
7.	LSTM algorithm-Time Series Analysis	2	
8.	Clustering Techniques Implementation – Different Techniques, SVM implementation	4	
9.	Simple neural network implementation, Deep Learning techniques – Shallow and Deep Neural network Concept of Keras , Tensor Flow	4	
Total		28	

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Cour	Course Outcomes:	
After	After completion of the course, students will be able to:	
1	Implement different searching and gaming strategies using AI.	
2	Implement different classification and clustering algorithm	
3	Understand and implement decision tree	
4.	Should be able to implement Deep Learning Techniques.	

Leari	ning Resources:
1	Artificial Intelligence with Python – Prateek Joshi PACKT Publishing
2	Hands-On Machine Learning with Scikit-Learn and TensorFlow- Aureillen Garon O Reilley
3	Hands-On Deep Learning Algorithms with Python-Sudharsan Ravichandiran Packt
	Publishing
4	Introduction to Machine Learning with Python
	by Andreas C. Müller, Sarah Guido
	Released October 2016
	Publisher(s): O'Reilly Media, Inc.
	ISBN: 9781449369415
5.	Practical Machine Learning Released January 2016
	Publisher(s): Packt Publishing
	ISBN: 9781784399689 – Sunita Gollapudi

Course Name:	Machine Learning Lab		
Course Code:	OE-IT691A	Category:	Open Elective
Semester:	Sixth	Credit:	1
L-T-P:	0-0-2	Pre-Requisites:	Data Structure & Algorithm,
			Mathematics
Full Marks:	100		
Examination	Semester Examination:	Continuous	Attendance: 05
Scheme:	60	Assessment: 35	

(Course Objectives:		
	1	To learn the concepts of data and patterns	
	2	To design and implement various machine learning algorithms.	
	3	Implement supervised and unsupervised machine learning	
	4.	Implement Deep Learning Techniques and various feature extraction with case study.	

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Course Co	Course Contents:		
Module No.	Description of Topic	Contact Hrs.	
1	Implementation of Linear Regression , logistic regression, multivariate logistic regression	4	
2	Decision Tree and Ensemble Techniques, Bagging, Boosting	4	
3	LSTM algorithm-Time Series Analysis	4	
4	Clustering Techniques Implementation – Different Techniques, SVM implementation	6	
5.	Simple neural network implementation, Deep Learning techniques – Shallow and Deep Neural network Concept of Keras , Tensor Flow	6	
6.	Factorization and Generative Model implementation	2	
Total		26	

Cour	Course Outcomes:	
After	After completion of the course, students will be able to:	
1	Implement different classification and clustering algorithm	
2	Understand and implement decision tree	
3	Implement Deep Learning Techniques.	
4.	Implement different classification and clustering algorithm	

Learn	Learning Resources:	
1	Practical Machine Learning Released January 2016	
	Publisher(s): Packt Publishing	
	ISBN: 9781784399689 – Sunita Gollapudi	
2	Hands-On Machine Learning with Scikit-Learn and TensorFlow- Aureillen Garon O Reilley	
3	Hands-On Deep Learning Algorithms with Python-Sudharsan Ravichandiran Packt	
	Publishing	
4	Introduction to Machine Learning with Python	
	by Andreas C. Müller, Sarah Guido	
	Released October 2016	
	Publisher(s): O'Reilly Media, Inc.	
	ISBN: 9781449369415	

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Course Name:	Mini Project			
Course Code:	PW-EC(V)681	Category:	Sessional	
Semester:	Sixth	Credit:	1.5	
L-T-P:	0-0-3	Pre-Requisites:	Analog Electronics, Digital Electronics, Microprocessor & Microcontrollers	
Full Marks:	100			
Examination	Semester Examination:	Continuous	Attendance: 05	
Scheme:	40	Assessment: 55	Attendance, 03	

Course Objectives:		
1	To impart the essential knowledge of electronic circuit design.	
2	To enhance hands on experience and to encourage innovativeness.	

Module No.	Description of Topic	Contact Hrs.
	Guidelines:	
	1. The mini-project is a team activity having 3-4 students in a team. This	
	is electronic product design work with a focus on electronic circuit	
	design.	
	2. The mini project may be a complete hardware or a combination of	
	hardware and software.	
	3. Mini Project should cater to a small system required in laboratory or	
	real life.	
	4. It should encompass components, devices, analog or digital ICs, micro	
	controller with which functional familiarity is introduced.	
	5. After interactions with mentor and based on comprehensive literature	
	survey/need analysis; the student shall identify the title and define the	
	aim and objectives of mini-project. The project should provide enough	
	room for the student to learn and innovate. If same job is assigned to more than	
	one group, it must be with different parameter values.	
	6. Student is expected to detail out specifications, methodology,	
	resources required, critical issues involved in design and implementation	
	and submit the proposal within two weeks from the starting of the	
	semester.	
	7. The student is expected to follow the timeline as given for design,	
	development and testing of the proposed work.	
	8. Layout should be made using CAD based simulation software, if	
	required. Due considerations should be given for power requirement of	
	the system, mechanical aspects for enclosure and control panel design.	

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal

243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in

- 9. The student must always make a comparative study between the theoretical and measured performance parameters and analyze their causes.
- 10. Completed mini project and documentation in the form of mini project report is to be submitted at the end of semester.
- 11. Few sessions should be considered for discussion on standard practices used for electronic circuits/product design, converting the circuit design into a complete electronic product, PCB design using suitable simulation software, estimation of power budget analysis of the product, front panel design and mechanical aspects of the product, and guidelines for documentation /report writing.

Grading System:

- 1. The total score of 100 will be in three parts,
 - a) Continuous evaluation: 55
 - b) Semester end viva: 40
 - c) Attendance: 05
- 2. The teacher will evaluate the performance of each student on the basis of initiative, innovativeness, speed, ability to follow timeline and insight for continuous evaluation.
- 3. At the end of the semester, the student will be interviewed by a panel of examiners to assess his/her expertise in various facets of the work.

Total 40

Course Outcomes:		
After completion of the course, students will be able to:		
1	Identify a problem statement, analyze it after literature survey or from given conditions.	
2	Design the prototype in order to solve the conceived problem.	
3	Implement and test the prototype in order to solve the conceived problem.	

L	Learning Resources:			
1	The Art of Electronics, Paul Horowitz and Winfield Hill, 2 nd edition, Cambridge			
	University Press			
2	Electronics for You, EFY Group			

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India

Ph: +91 33 26549315/17 Fax +91 33 26549318 Web: www.mckvie.edu.in

Course Name:	Aptitude Skill Developm	kill Development-II	
Course Code:	MC671	Category:	Mandatory Course
Semester:	Second	Credit:	0
L-T-P:	2-0-0	Pre-Requisites:	Quantitative Ability, Logical and Verbal Reasoning
Full Marks:	100		
Examination	Semester Examination:	Continuous	Attendance: NA
Scheme:	NA	Assessment: 100	Auenuance, NA

Course Objectives:

To be prepared in the area of Quantitative Ability as well as Logical and Verbal Reasoning for Campus Placements and different Competitive Exams

Course Contents:			
Module No.	Description of Topic	Contact Hrs.	
	Solve company oriented campus placements	20	
1	aptitude papers covering Quantitative Ability,		
	Logical Reasoning and Verbal Ability.		
$\overline{2}$	Mock test	10	
Total		30	

	Course Outcomes:	
A	After completion of the course, students will be able to:	
1	Prepared for Campus Placements and different Competitive Exams	

Learning Resources:	
1	ArunSharma,"Quantitative abilities", McGraw-Hill
2	R.S.Agrawal, "Quantitative Aptitude for Competitive Examinations", S. Chand
3	R.S.Agarwal,"A Modern Approach to Verbal & Non-Verbal Reasoning ",S.Chand

NAAC Accredited "A" Grade Autonomous Institute under UGC Act 1956
Approved by AICTE & affiliated to Maulana Abul Kalam Azad University of Technology, West Bengal
243 G.T. Road (N), Liluah, Howrah- 711204, West Bengal, India